If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+1.5t+2.5=0
a = -4.9; b = 1.5; c = +2.5;
Δ = b2-4ac
Δ = 1.52-4·(-4.9)·2.5
Δ = 51.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{51.25}}{2*-4.9}=\frac{-1.5-\sqrt{51.25}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{51.25}}{2*-4.9}=\frac{-1.5+\sqrt{51.25}}{-9.8} $
| 6x-12=90-3x-30 | | X+(x+5)+(x-9)=53 | | 7x-92=180-6x-12 | | 3x+4=108-8x+28 | | 3x+4=108-(8x−28) | | 9(-2+n)=-27 | | 5k+4-(6k-2)+(2k-5)-2(3k+7)=0 | | 7(1r-4)=0 | | (2y-10(y+1)+5)+20=30 | | 7x+9x-4x-5=43 | | 9x-75+8x-67=90 | | 30=6000/t | | (2x+13)+x=73 | | (25-2x)(6+4)=30-10x | | -2x+4x=2(3x-4) | | 20=d/1.5 | | 52x+1+495x-51=51 | | (25-2x)6+4=30-10x | | 12(x+2)-6x+3=14 | | (X+12)+(x)=1000 | | 3(2n+1)+5(n-5)=6+7(2n+4) | | 0.06(3t+6)=0.18(t-2)+0.72 | | 6y+2y=7y-7 | | 5(2x-)+14-2x=9 | | 5(c+4)+2(3c-1)=3(2c-3)+4(c+12) | | 8^2x-4=10^3x-8 | | (X+2)3=x+12 | | 4(5d-2)=6(2d+3) | | 2x•3=x+12 | | 5(2y+3)=3(2y-7) | | -96=80t-16t^2 | | 3x^2+36x+100=0 |